Les grandes manoeuvres du véhicule électrique
second : 
les véhicules à H2 aka FBI aka fin du game :

"Avantages et inconvénients du véhicule à hydrogène
La perspective de l’arrêt de la vente de véhicules à moteur thermique d’ici 2035 en Europe est une puissante incitation pour pouvoirs publics et constructeurs à accélérer la mise au point de moteurs alternatifs, principalement électriques. On l’a vu, le principe du moteur à hydrogène présente plusieurs avantages par rapport au moteur alimenté par une batterie électrique (BEV pour Battery Engine Vehicle).
 
Du point de vue de la conduite, une FCEV à pile à combustible offre le même confort de conduite qu’un BEV : la poussée instantanée, le débit linéaire, l’absence de saccades à la reprise et un confort de premier ordre avec aucun bruit de moteur.
La durée de chargement est un autre avantage. Suivant la station de charge et la capacité de la batterie et en dépit des progrès continus, il faut de 30 mn à plusieurs heures pour recharger la batterie d’un BEV, contre moins de 5 mn pour le FCEV. Concernant l’autonomie, net avantage au moteur à hydrogène puisqu’un réservoir plein permet environ 700 km d’autonomie.
 
Si le véhicule à hydrogène présente autant d’avantages pour l’utilisateur et pour l’environnement, comment se fait-il que son marché demeure confidentiel et que les constructeurs hésitent à développer de nouveaux modèles ? Le grand défaut de ces véhicules pour le moment réside dans les rares possibilités de faire le plein. Actuellement, les stations d’hydrogène sont très peu nombreuses. On en compte à peine une centaine en France alors que le réseau de bornes de chargement pour véhicules électriques atteint déjà plusieurs dizaines de milliers. De fait, une pompe à hydrogène coûte près d’un million d’euros, environ 20 fois plus qu’une borne de recharge électrique ultra-rapide à 350 kW.
Autre facteur qui explique la demande timide en véhicules à hydrogène : le prix. Les rares modèles de FCEV de classe moyenne à moyenne supérieure disponibles sur le marché, à savoir la Toyota Mirai et la Hyundai Nexo, coûtent près de 70 000 €, soit le double d’une voiture électrique ou hybride comparable. Ce prix élevé s’explique par l’absence d’industrialisation de la production et par le coût du platine utilisé dans la pile à combustible, même si la quantité nécessaire à baissé en quelques années. Une autre raison du prix élevé est la taille du FCEV. Le ou les réservoirs d’hydrogène prennent beaucoup de place, ce qui rend le véhicule forcément volumineux. D’où l’absence de petits modèles de FCEV, à la différence des voitures purement électriques. Outre le coût d’acquisition, les coûts d’exploitation jouent également un rôle important dans l’acceptation d’une technologie de motorisation. Actuellement, un kilo d’H2 coûte près de 10 € s’il provient d’une source d’énergie renouvelable ou bas carbone, mais sans taxes ni rentabilité. Ainsi, les coûts au kilomètre d’un véhicule à hydrogène sont donc actuellement près de deux fois plus élevés que ceux d’un véhicule électrique chargé à domicile. Axel Rücker estime cependant que ces coûts vont s’égaliser : « Si la demande d’hydrogène augmente, le prix au kilo devrait baisser à environ 5 euros d’ici 2030. » En intégrant les progrès récents dans le rendement des électrolyseurs, on parvient aujourd’hui à baisser le prix pour de l’hydrogène d’origine éolienne et stocké sur place autour de 6 € le kilo. Quoi qu’il en soit, l’hydrogène « vert » - issu d’une source d’énergie décarbonée -, même 2 à 3 fois moins cher, sera sans doute plus cher pour l’automobiliste que l’électricité stockée dans une batterie.
 
L’utilisation de l’hydrogène comme vecteur énergétique implique plusieurs étapes : la production d’H2, le stockage, le transport, la distribution et la reconversion de l’énergie stockée en électricité. Or un inconvénient de la fabrication d’hydrogène provient des pertes lors de l’électrolyse. Lors de l’électrolyse industrielle, il faut un litre d’eau et 5 kWh d’électricité pour produire 1000 litres de dihydrogène. Compte-tenu de la très faible densité volumique d’H2, il faut comprimer ce gaz à 700 bars avant que la pile à combustible puisse restituer de l’électricité, cette dernière ayant un rendement de 60%. De fait, le rendement énergétique global, « de l’électricité utilisée à la roue » atteint à peine 30%, soit un rendement inférieur de moitié à celui d’un véhicule électrique à batterie. 
Concernant le transport et le stockage, la tendance est à l’hydrogène liquide, plus facile à acheminer et à stocker. Cette opération est cependant plus complexe et nécessite plus d’énergie que l’essence ou le diesel, en tout cas pour le moment. Les sceptiques sur l'avenir de l’hydrogène avancent souvent que pour obtenir l’équivalent énergétique d’un camion-citerne d’essence, il faut 22 camions identiques d’H2 en bonbonnes à 200 bars ou 3 camions-citernes d’hydrogène liquéfié. Le problème est le même si l’on imagine un réseau de gazoducs qui nécessite de comprimer le gaz avant de l’injecter dans le réseau, ce qui entraîne une dépense beaucoup plus importante pour l’hydrogène que pour le méthane.
Toutefois, contrairement aux combustibles fossiles, l’hydrogène peut être produit partout où du courant et de l’eau sont disponibles, théoriquement donc juste à côté des stations-service. De fait, d’un point économique et écologique, la seule solution durable est la production d’hydrogène in situ. Les stations du réseau Uno-X en Norvège et au Danemark vendent ainsi le kilo d’hydrogène renouvelable aux alentours de 10 € le kilo, mais sans taxes et avec une rentabilité nulle, soit plus cher que l’électricité la plus chère du monde…"
[Image: 221347.png]
Répondre


Messages dans ce sujet
RE: Les grandes manoeuvres du véhicule électrique - par le-merou - 03-30-2023, 05:46 PM

Atteindre :